The Bergman Kernel and Quadrature Domains in the Plane
نویسنده
چکیده
A streamlined proof that the Bergman kernel associated to a quadrature domain in the plane must be algebraic will be given. A byproduct of the proof will be that the Bergman kernel is a rational function of z and one other explicit function known as the Schwarz function. Simplified proofs of several other well known facts about quadrature domains will fall out along the way. Finally, Bergman representative coordinates will be defined that make subtle alterations to a domain to convert it to a quadrature domain. In such coordinates, biholomorphic mappings become algebraic.
منابع مشابه
$L^p$ boundedness of the Bergman projection on some generalized Hartogs triangles
In this paper we investigate a two classes of domains in $mathbb{C}^n$ generalizing the Hartogs triangle. We prove optimal estimates for the mapping properties of the Bergman projection on these domains.
متن کاملQuadrature Domains and Kernel Function Zipping
It is proved that quadrature domains are ubiquitous in a very strong sense in the realm of smoothly bounded multiply connected domains in the plane. In fact, they are so dense that one might as well assume that any given smooth domain one is dealing with is a quadrature domain, and this allows access to a host of strong conditions on the classical kernel functions associated to the domain. Foll...
متن کاملComplexity of the Classical Kernel Functions of Potential Theory
We show that the Bergman, Szegő, and Poisson kernels associated to an n-connected domain in the plane are not genuine functions of two complex variables. Rather, they are all given by elementary rational combinations of n+ 1 holomorphic functions of one complex variable and their conjugates. Moreover, all three kernel functions are composed of the same basic n+ 1 functions. Our results can be i...
متن کاملThe Bergman Kernel Function of Some Reinhardt Domains
The boundary behavior of the Bergman Kernel function of some Reinhardt domains is studied. Upper and lower bounds for the Bergman kernel function are found at the diagonal points (z, z̄). Let D be the Reinhardt domain D = { z ∈ C | ‖z‖α = n ∑
متن کاملThe new version of Differential Quadrature Buckling Analyses of FGM Rectangular Plates Under Non-Uniform Distributed In-Plane Loading
In this paper the buckling coefficient of FGM rectangular plates calculated by the new version of differential quadrature method (DQM). At the first the governing differential equation for plate has been calculated and then according to the new version of differential quadrature method (DQM) the existence derivatives in equation , convert to the amounts of function in the grid points inside of ...
متن کامل